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Supermassive Binary Black Holes
• Binary AGN are a primary multi-messenger source for 

LISA (inspirals, mergers, ringdowns) and PTA (inspirals). 

•Likeliest EM-bright binary black hole system.

•Best candidate for exploring plasma physics in the 
strongest and most dynamical regime of gravity.

• GWs with LISA aid localization, & with smart pointing 
strategies with fast-slewing X-ray telescopes (e.g. 
Transient Astrophysics Probe) one may find O(1-5) 
systems before merger.  
Dal Canton++, ApJ 886 (2019).  

•Only (?) opportunity to see EM/GW through all phases: 
inspiral to merger to ring-down. 

• Rubin Observatory will identify 100k’s of AGN, so even a 
“small” binary fraction implies many sources.

• EM identification will be critical for detection and 
characterization—> realistic simulations and their EM 
output are needed!



Mass Ratio Survey : Circumbinary Disks Noble, Krolik, Campanelli, Zlochower, 
Mundim, Nakano, and Zilhão, ApJ, 922, 175, 
(2021).
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• Simulations of only 
circumbinary disk region, 
starting from Noble++2012 
conditions, only changing q.  

• As mass-ratio diminishes, 
so does gravitational torque 
density of the binary, 
asymptoting to “single BH” 
disk;  

• Weaker torques also 
diminish strength of the 
lump feature.  

• Weaker torques (smaller 
mass ratio binaries) take 
longer to form lumps.  

• Duffel++2019, see transition 
in lump’s relevance at q~0.2  
for viscous Newtonian 
hydro. disks;  See also Shi & 
Krolik 2016, Munoz+2019, 
Moody+2019.Same times Last time of run

q=M2/M



Magnetic Stress per Mass

12 Noble, et al. (2021)

Figure 9. Contributions to the time-average radial distribution of @r@tJ (black) in the mass ratio series. Shown are the

radial derivatives of the Maxwell stress in the Eulerian frame ({Mr
�}, red), the angular momentum flux due to shell-integrated

Reynolds stress in the Eulerian frame ({Rr
�}, green), and advected angular momentum ({Ar

�} , gold). Also shown are the

torque densities per unit radius due to the actual binary spacetime (dT/dr, blue) and radiation losses ({F�}, cyan). The net

rate of change of angular momentum @r@tJ (solid black). All quantities in the top (bottom) row plots are time-averaged over

40, 000 < t/M < 76, 000 (last 30, 000M of evolution per run). (Left-to-right) RunSE, Runq=1/2, Runq=1/5, Runq=1/10. Note

that @r {Mr
�}, @r {Rr

�} , @r {Ar
�}, and {F�} have all been multiplied by a factor of �1 to match the sign they have in Eq. (20)

so their curves add up to that of @r@tJ .

more rapidly than the others, but in this time-span is874

evolving rapidly at larger radii. At later times, all three875

new runs come much closer to equilibrium in their an-876

gular momentum evolution.877

To close this section on axisymmetric properties, we878

remark on how the non-axisymmetric lump can influence879

azimuthally-averaged properties such as the vertically-880

integrated magnetic stress and the MRI quality factors.881

The largest value of the former over the entire radial ex-882

tent of the circumbinary disk is found at the radial loca-883

tion of the lump, even though the minima for the latter884

are found at the (r,�) locations of the lump (see Ap-885

pendix B). To explain this diminution in MRI quality, we886

point out that the magnetic stresses of RunSE, Runmed,887

and Runlrg all agree at r = 5a, suggesting that the vari-888

ations between those runs neither strengthen nor weaken889

the field in the outer disk. Nonetheless, in Runmed and890

Runlrg, the stresses at r ' 2a, i.e., the lump region, are891

even larger than in RunSE. This fact suggests that most892

of the degradation in MRI quality in these runs must be893

due to increased density in the lump region.894

In order to explore how magnetic stress may influence895

lump dynamics and evolution, it is useful to define a896

measure of the magnitude of the magnetic stress per897

unit mass, which we will call W r
� following Balbus &898

Hawley (1998):899

W r
� =

{Mr
�}

{⇢}
. (24)900

This quantity for the mass ratio series and the magnetic901

flux series is shown in Figure 11 and Figure 12, respec-902

tively. In every run of the mass-ratio series, W r
� at radii903

r
⇠
> 2a drops abruptly by about a factor of 4 at a time904

⇡ 40, 000M . Particularly for low q, this drop begins at905

large radius and only then extends inward. The evolu-906

tion of W r
� in the magnetic flux series is very di↵erent907

because we deliberately manipulated the magnetic flux908

available.909

For those runs with a lump, we find that once the spe-910

cific magnetic stress drops to W r
� ⇠
< 10�4 the lump ap-911

pears when one uses the criteria described in Section 4.912

The significance of this value will be discussed in Sec-913

tion 5.1.914

4. NON-AXISYMMETRIC STRUCTURE915

4.1. Lump Amplitude916

Mass-ratio and Magnetic Flux-Dependence of Circumbinary Disks 25

Figure 28. Fourier power spectra of quantities related to the lump’s amplitude, motion, and position including only times

t > Tlump. For those runs with no observed lump, we use the simulation’s last 2.5⇥104M of time. Before performing the Fourier

power spectrum, the function is conditioned by subtracting a 5th-order polynomial fit and then applying a normalization factor

equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ! = !lump, ⌦bin, and

2 (⌦bin � !lump); for those runs without a lump, !lump of RunSE is used instead. (Left-to-right) RunSE, Runmed, Runlrg,

Runinj .
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where we have used the Newtonian rota-1384

tion rates, !lump = M�1 (rlump/M)�3/2 =1385

M�1 (rlump/a)
�3/2 (a/M)�3/2, and tbin =1386

2⇡M(a/M)3/2. The average radial extent of the growing1387

lump, �rlump, is often found to be a fixed fraction of the1388

binary separation, a. This fraction is generically small1389

because the m = 1 overdensity originates from an ex-1390

pelled accretion stream compressed by its shock against1391

the cavity wall. We estimate �rlump ⇠ 0.1a at the time1392

the lump begins to form, which has been observed in1393

a number of simulations MacFadyen & Milosavljević1394

(2008); Noble et al. (2012); Zilhão et al. (2015); Farris1395

et al. (2014); Miranda et al. (2017).1396

The dissipation time scale of magnetic field loss in the1397

lump is the period between successive BH-overdensity1398

interactions, which occur at twice the beat frequency1399
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3
2⌦bin:1400

tdiss =
2⇡

⌦diss
'

2

3
tbin . (39)1401
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We would expect a lump to develop once Y < 1,1408

and may not otherwise because the MRI operates on1409

a tlump � tbin time scale at the location of lump. For1410

our parameters, we find this ratio implies a lump will1411

grow. We found that the lump does not occur earlier1412

in the lump-forming evolutions because W r
� is an order1413

of magnitude larger, pushing Y > 1. When we inject1414

magnitude field in Runinj , W r
� grows by an order of1415

magnitude resulting in Y > 1 until the specific mag-1416

netic stress returns to the 10�4 level and the lump re-1417

turns. We also note that once the lump begins to form,1418

its radial extent grows, which makes it more di�cult to1419

rejuvenate its magnetic field through advective mixing1420

because Y / �r�1
lump.1421

Although this model does not explicitly depend on the1422

mass ratio, the qualitative picture does help us under-1423

stand why it is more di�cult for binaries with smaller1424
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Figure 28. Fourier power spectra of quantities related to the lump’s amplitude, motion, and position including only times

t > Tlump. For those runs with no observed lump, we use the simulation’s last 2.5⇥104M of time. Before performing the Fourier

power spectrum, the function is conditioned by subtracting a 5th-order polynomial fit and then applying a normalization factor

equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ! = !lump, ⌦bin, and

2 (⌦bin � !lump); for those runs without a lump, !lump of RunSE is used instead. (Left-to-right) RunSE, Runmed, Runlrg,

Runinj .
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where we have used the Newtonian rota-1384
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et al. (2014); Miranda et al. (2017).1396
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interactions, which occur at twice the beat frequency1399
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We would expect a lump to develop once Y < 1,1408

and may not otherwise because the MRI operates on1409

a tlump � tbin time scale at the location of lump. For1410

our parameters, we find this ratio implies a lump will1411

grow. We found that the lump does not occur earlier1412

in the lump-forming evolutions because W r
� is an order1413

of magnitude larger, pushing Y > 1. When we inject1414

magnitude field in Runinj , W r
� grows by an order of1415

magnitude resulting in Y > 1 until the specific mag-1416

netic stress returns to the 10�4 level and the lump re-1417

turns. We also note that once the lump begins to form,1418

its radial extent grows, which makes it more di�cult to1419

rejuvenate its magnetic field through advective mixing1420

because Y / �r�1
lump.1421

Although this model does not explicitly depend on the1422

mass ratio, the qualitative picture does help us under-1423

stand why it is more di�cult for binaries with smaller1424

24 Noble, et al. (2021)

Figure 27. Fourier power spectra of quantities related to the lump’s amplitude, motion, and position including only times

t > Tlump. For those runs with no observed lump, we use the simulation’s last 2.5⇥104M of time. Before performing the Fourier

power spectrum, the function is conditioned by subtracting a 5th-order polynomial fit and then applying a normalization factor

equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ! = !lump, ⌦bin, and

2 (⌦bin � !lump); for those runs without a lump, !lump of RunSE is used instead. (Left-to-right) RunSE, Runq=1/2, Runq=1/5,

Runq=1/10.

Run Name �Ṁ/Ṁ Ṁ [10�3] �L/L L[10�4]

RunSE 0.29 5.6 0.027 3.3

Runq=1/2 0.54 3.3 0.048 1.9

Runq=1/5 0.33 2.2 0.025 1.4

Runq=1/10 0.20 4.8 0.022 1.8

Runmed 0.30 11. 0.043 5.4

Runlrg 0.38 10. 0.033 5.1

Runinj 0.56 4.1 0.054 1.4

Table 3. Standard deviations �Ṁ (�L) of accretion rate (lu-

minosity) for each run, taken over the same period in which

the PSDs were calculated in Figures 25 - 26. Each stan-

dard deviation is normalized by the mean of the quantity in

question over this period. These averages are also displayed,

though in code units.

over magnetic field growth in the circumbinary disk? For1340

there to be a physical origin for the depletion of specific1341

magnetic field strength in the lump, we need to under-1342

stand how the magnetic field is preferentially destroyed1343

there. The mechanism also needs to depend on the mass1344

ratio since we find that a significant lump forms for only1345

su�ciently large q. The answer comes from animations1346

of magnetic field structure in the torqued streams strik-1347

ing the circumbinary disk, which show that the magnetic1348

field in these streams is directed opposite to the field1349

in the disk where the stream arrives. The collision of1350

oppositely-oriented magnetic field distribution with the1351

inner cavity wall material leads to large-scale reconnec-1352

tion and dissipation of the field into heat. This process1353

can therefore explain how the magnetic field in the lump1354

region decreases.1355

Local magnetic field may grow through local MHD in-1356

stabilities like the MRI and be replenished by field car-1357

ried into the region by inward fluid motion. Our interest1358

in exploring these processes was the reason for plotting1359

the magnetic stress per unit mass, W r
� in Figures 11 -1360

12. Lumps form only when W r
� falls below ' 10�4

1361

in the region near the circumbinary disk’s inner edge.1362

While this is just a correlation, it is one that works for1363

runs with di↵erent Tlump, suggesting it is not a simple1364

function of the mass ratio or initial conditions. In order1365

to explore why this value is important, let us compare1366

the time scales for magnetic field advection across the1367

lump, �tlump, and the time scale over which the mag-1368

netic field is dissipated, tdiss, by compression of expelled1369

streams with oppositely oriented magnetic field.1370

Assuming time steadiness of the accretion flow and1371

that Maxwell stress accounts for the majority of the total1372

stress, one can show that far from the edge of the disk:1373

W r
� ' r⌦K(r)hur

i⇢ , (35)1374

where ⌦K is the local Keplerian orbital rate, and hur
i⇢ is1375

the accretion inflow speed which can be used to estimate1376

the time scale for advection of plasma across the lump,1377

• Lump formation observed to 
occur after specific magnetic 
stress asymptotes to certain 
value; 

• Trend observed across all runs, 
even those in which magnetic 
flux was injected to dissipate the 
lump;  

• Competition between: 
• Rate of dissipation of field from 

binary’s gravitational torque 
expelled stream into lump; 

•  Rate of magnetic field 
advected into the lump region; 

• Lump forms when:

Mass-ratio and Magnetic Flux-Dependence of Circumbinary Disks 25

Figure 28. Fourier power spectra of quantities related to the lump’s amplitude, motion, and position including only times

t > Tlump. For those runs with no observed lump, we use the simulation’s last 2.5⇥104M of time. Before performing the Fourier

power spectrum, the function is conditioned by subtracting a 5th-order polynomial fit and then applying a normalization factor

equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ! = !lump, ⌦bin, and

2 (⌦bin � !lump); for those runs without a lump, !lump of RunSE is used instead. (Left-to-right) RunSE, Runmed, Runlrg,

Runinj .
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where we have used the Newtonian rota-1384

tion rates, !lump = M�1 (rlump/M)�3/2 =1385

M�1 (rlump/a)
�3/2 (a/M)�3/2, and tbin =1386

2⇡M(a/M)3/2. The average radial extent of the growing1387

lump, �rlump, is often found to be a fixed fraction of the1388

binary separation, a. This fraction is generically small1389

because the m = 1 overdensity originates from an ex-1390

pelled accretion stream compressed by its shock against1391

the cavity wall. We estimate �rlump ⇠ 0.1a at the time1392

the lump begins to form, which has been observed in1393

a number of simulations MacFadyen & Milosavljević1394

(2008); Noble et al. (2012); Zilhão et al. (2015); Farris1395

et al. (2014); Miranda et al. (2017).1396

The dissipation time scale of magnetic field loss in the1397

lump is the period between successive BH-overdensity1398

interactions, which occur at twice the beat frequency1399
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We would expect a lump to develop once Y < 1,1408

and may not otherwise because the MRI operates on1409

a tlump � tbin time scale at the location of lump. For1410

our parameters, we find this ratio implies a lump will1411

grow. We found that the lump does not occur earlier1412

in the lump-forming evolutions because W r
� is an order1413

of magnitude larger, pushing Y > 1. When we inject1414

magnitude field in Runinj , W r
� grows by an order of1415

magnitude resulting in Y > 1 until the specific mag-1416

netic stress returns to the 10�4 level and the lump re-1417

turns. We also note that once the lump begins to form,1418

its radial extent grows, which makes it more di�cult to1419

rejuvenate its magnetic field through advective mixing1420

because Y / �r�1
lump.1421

Although this model does not explicitly depend on the1422

mass ratio, the qualitative picture does help us under-1423

stand why it is more di�cult for binaries with smaller1424

1. Replenished material torqued outward from 
accretion stream; 

2. Returning material leads to weaker shear 
stress:  

1.It is corotating with material there so 
differential rotational velocity diminishes,  
weakening hydro viscosity or MRI;  
2.MHD: magnetic field is dissipated there too,  
possibly resulting in even more significant 
lump formation.

q=1 Medium
Disk

Large
Disk

Mag.-flux
Injected

Disk

Mag. Flux Survey Noble, Krolik, Campanelli, Zlochower, Mundim, 
Nakano, and Zilhão, ApJ, 922, 175, (2021).
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Figure 28. Fourier power spectra of quantities related to the lump’s amplitude, motion, and position including only times

t > Tlump. For those runs with no observed lump, we use the simulation’s last 2.5⇥104M of time. Before performing the Fourier

power spectrum, the function is conditioned by subtracting a 5th-order polynomial fit and then applying a normalization factor

equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ! = !lump, ⌦bin, and

2 (⌦bin � !lump); for those runs without a lump, !lump of RunSE is used instead. (Left-to-right) RunSE, Runmed, Runlrg,

Runinj .
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the cavity wall. We estimate �rlump ⇠ 0.1a at the time1392

the lump begins to form, which has been observed in1393

a number of simulations MacFadyen & Milosavljević1394

(2008); Noble et al. (2012); Zilhão et al. (2015); Farris1395

et al. (2014); Miranda et al. (2017).1396
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Figure 28. Fourier power spectra of quantities related to the lump’s amplitude, motion, and position including only times

t > Tlump. For those runs with no observed lump, we use the simulation’s last 2.5⇥104M of time. Before performing the Fourier

power spectrum, the function is conditioned by subtracting a 5th-order polynomial fit and then applying a normalization factor

equal to the curve’s standard deviation. Vertical dotted lines in each plot lie, from left to right, at ! = !lump, ⌦bin, and

2 (⌦bin � !lump); for those runs without a lump, !lump of RunSE is used instead. (Left-to-right) RunSE, Runmed, Runlrg,

Runinj .
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assume that the frame carried by the BH is parallel to
the axes of the inertial system O. Since at each point
the BH has a time-dependent velocity with respect to O,
locally we have to boost at each point in time the spatial
frame to compare this with the global frame. The general
Lorentz transformation in the xy plane, given the spatial
velocity ~v = �~n(t) of the BH, can be obtained with the
boost generators ~K and rapidity ⇠ = tanh�1(�) as:

⇤(t) = exp (⇠~n(t) · ~K)

=

0
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We use this transformation to boost the spatial basis
of the BH. In the BH coordinates, this basis is simple
given by ei = {(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. Then,
in global coordinates this is then given by e

a

(i)
(t) = ⇤a

i
(t).

FIG. 1. Diagram of the BH rest frame which is non-inertial
and the global frame. The coordinates x and X both describe
the event e.

The coordinates, using (19), are then given by:

t = �

⇣
T � �(nxX + nyY )

⌘
, (20)

x = sx(t) + X(1 + (� � 1)n2

x
) + Y (�(� � 1)nxny)),

(21)

y = sy(t) + X(�(� � 1)nxny) + Y (1 + (� � 1)n2

y
),
(22)

z = Z. (23)

The non-inertial coordinates Xa in terms of the global
coordinates x

a are easily obtained inverting these equa-
tions. Note that this reduces to a standard Lorentz boost
for a constant velocity trajectory. These coordinates de-
fine a di↵eomorphism transformation �Xx that we can
use to push-forward each BH term of the metric and

build an inpiralling superimposition. In short, (a) the
X

a coordinates are the geodesic coordinates of an ac-
celerated worldline s

a(t), describing the orbit of a BH;
(b) for a moving BH, we associate the Harmonic metric
with the X

a coordinates, so we need to transform from
X

a to x
a using the Jacobian matrix, to build the metric

in the global frame. Superimposing the two BH terms
and performing this transformation for each term, with
worldlines s

a

1
(t) and s

a

2
(t), we have explicitly:

gab = ⌘ab + M1

⇣
@X

a

1

@xa

@X
b

1

@xb
H

ab

⌘
+ M2

⇣
@X

a

2

@xa

@X
b

2

@xb
H

ab

⌘
,

(24)
where the tensors are transformed through the Jacobian
of the coordinates X

a

A
(x). We still have to supplement

the metric with the position, velocity, and acceleration
of the BHs. In the case of a BBH, we can obtain those
solving the PN equations of the system in Harmonic co-
ordinates, as we show in next section.

C. Post-Newtonian trajectories for spinning BH
binaries

LC: Please re-check if all this makes sense

(Hiro, Brennan?)

Let us assume that the BHs have (anti-)aligned spins,
so we do not consider orbital precession. We also as-
sume that the orbit of the binary has circularized and
the system is well described by the so-called adiabatic
approximation. In this case, the inspiral is driven by the
loss of binding energy of the orbit, E, balanced by the
gravitational wave flux of energy, F , and change in mass
Ṁ :

Ė = �F � Ṁ. (25)

From this equation, we can obtain the orbital phase,
�(t), and separation, r12(t), of the system. In the case of
quasi-circular orbits, the separation r12 is linked to the
orbital frequency through the relativistic generalization
of Kepler’s law [11]. We solve for the orbital phase first,
following the TaylorT4 scheme for non-precessing bina-
ries [17, 18]. We start making a change of variable to
the (gauge invariant) parameter v := (Md�/dt)1/3, so
we can write Eq. 25 as two equations:

dv

dt
= �F(v) + Ṁ(v)

dE(v)/dv
, (26)

d�

dt
= v

3
/M. (27)

We use explicit expressions at 3.5 PN order for E(v),
F(v), and Ṁ(v) for a non-precessing binary from Ref.
[19]. The TaylorT4 scheme consist in expanding the right
hand side of Eq. (26) in a Taylor series to the proper PN

Superposed Kerr-Schild Combi, Armengol, Campanelli, Ireland, Noble, Nakano, and Bowen, 
PhRvD, 104, 044041, (2021).
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order, and then integrate to obtain t(v). Inverting this
quantity, we obtain �(t) by solving Eq. (27).

For obtaining the orbital separation r12(t), we consider
its time derivative, written in terms of the orbital energy:

ṙ12 =
dE/dt

dE/dr12
⌘ �

⇣
F(r12) + Ṁ(r12)

⌘

dE/dr12
. (28)

We can integrate this to find:

t(r12) = tc �
Z

dr12
dE/dr12⇣

F(r12) + Ṁ(r12)
⌘ . (29)

where tc is the collision time. We use explicit expres-
sions for E(r12), F(r12), and Ṁ(r12) found, for instance,
in Ref. [11] and references therein. Finally, we invert
t(r12) to obtain r12(t). With both �(t) and r12(t) we
can recover the position, velocity, and acceleration, of
each spinning hole in Harmonic coordinates, ready to use
in our metric (24).

Note that even though we use the PN approximation to
obtain the BH trajectories, our metric is valid in the inner
zone because we are using the full relativistic BH terms
that include the ergosphere and horizon (see Appendix
A). In other words, we are restricted to binaries with
separations larger than ⇠ 10 M, but the metric, as we
will show now, is accurate in both inner and near zone.

III. ANALYSIS OF THE SPACETIME METRIC

A. Methods

In this section, we test the global validity of our su-
perimposed metric (??). In general, the metric of a BBH
system must satisfy Einstein’s field equation in vacuum
so the Ricci tensor of this metric should be zero. In
numerical relativity, one usually checks violation of Ein-
stein’s equation monitoring the Hamiltonian and momen-
tum constrains. Here, we shall focus on four-dimensional
quantities in order to quantify deviations from the exact
solution. In particular, following Ref. [20], we investigate
the Ricci scalar as a measure of the validity of our super-
imposed metric. Violations of the Ricci scalar, defined
as R := g

ab
Rab, where Rab is the Ricci tensor, are not

absolute and thus it is only meaningful when we compare
it relative to other quantities. For instance, if we have
that |R(t1)| > |R(t0)| for t1 > t0, we can state that the
solution has deteriorate over time, deviating more from
a vaccuum solution. Similarly, we can compare the Ricci
scalar between di↵erent system parameters and at di↵er-
ent points in space.

We shall also compare the validity of our solution with
an alternative approach presented in Ref. [14, 20] where
an analytical metric is built matching di↵erent approx-
imated solutions of Einstein’s equations. The matching
metric is constructed stitching three characteristics zones
of a binary compact system, namely, the inner zone, the

near zone, and the far zone [21, 22]. An asymptotic
matching procedure is implemented to bring all these
di↵erent parts into the same Harmonic coordinate sys-
tem. This metric in the global coordinate system can be
written as:

gab = (1 � fFZ)
n
fNZ

⇥
fIZ,1 g

(NZ)

ab
+ (1 � fIZ,1) g

(IZ1)

ab

⇤

+(1 � fNZ)
⇥
fIZ,2 g

(NZ)

ab
+ (1 � fIZ,2) g

(IZ2)

ab

⇤o

+fFZ g
(FZ)

ab
(30)

where transition functions fi are used to go from one zone
to the other. This approximate solution has been used
as a background spacetime for accretion disk simulations
with sucess [? ? ? ]. The metric, however, is com-
putational expensive and complex to handle. Moreover,
for the spinning case, the matching procedure renders
the metric prohibitively expensive for doing simulations.
In our new approach, although some accuracy is lost in
comparison with the matching metric, the superimposed
metric is easier to handle, much cheaper than the match-
ing method, and extensible to more complex configura-
tions such as precessing system, eccentric orbits, and even
three-body systems.

Although the metric is analytical, we compute the
spacetime scalars numerically as it is faster and more
practical to incorporate the PN trajectories. We use a
C-based code that implements fourth-order finite di↵er-
ences in a Cartesian grid for the derivatives of every met-
ric function. The convergence analysis of these methods
is presented in Appendix B.

B. Spacetime scalars

We are interested in the inspiral regime where the PN
approximation holds and the system is emitting a signif-
icant amount of gravitational radiation. We explore the
characteristic of the system for a fiducial configuration
with separations around D = 20M , unity mass ratio,
and spin parameters in the interval 0 < � < 0.9.

We begin the analysis computing the metric determi-
nant

p
�g of the metric as a first check of inconsistencies

or pathologies in the metric. We plot the determinant
of the binary for a separation of D = 20 M and several
values of the spin parameter � as well as the determinant
for the matching metric in Figure 2. We see that for all
these values, the determinant for the superimposed met-
ric is globally well-behaved and similar to the matching
space-time.

Now, we compute the Ricci scalar of the superimposed
harmonic metric compared with the matching metric for
a binary of same characteristics, see Figure 3. Note that
the matching metric performs better in each particular
zone but is heavily a↵ected by the transition regions; in
contrast, the superimposed metric is overall smoother.
The performance of the superimposed metric is worse in
the inner-zone. Note, however, that the components of

4

assume that the frame carried by the BH is parallel to
the axes of the inertial system O. Since at each point
the BH has a time-dependent velocity with respect to O,
locally we have to boost at each point in time the spatial
frame to compare this with the global frame. The general
Lorentz transformation in the xy plane, given the spatial
velocity ~v = �~n(t) of the BH, can be obtained with the
boost generators ~K and rapidity ⇠ = tanh�1(�) as:

⇤(t) = exp (⇠~n(t) · ~K)
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We use this transformation to boost the spatial basis
of the BH. In the BH coordinates, this basis is simple
given by ei = {(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. Then,
in global coordinates this is then given by e

a

(i)
(t) = ⇤a

i
(t).

FIG. 1. Diagram of the BH rest frame which is non-inertial
and the global frame. The coordinates x and X both describe
the event e.

The coordinates, using (19), are then given by:

t = �

⇣
T � �(nxX + nyY )

⌘
, (20)

x = sx(t) + X(1 + (� � 1)n2

x
) + Y (�(� � 1)nxny)),

(21)

y = sy(t) + X(�(� � 1)nxny) + Y (1 + (� � 1)n2

y
),
(22)

z = Z. (23)

The non-inertial coordinates Xa in terms of the global
coordinates x

a are easily obtained inverting these equa-
tions. Note that this reduces to a standard Lorentz boost
for a constant velocity trajectory. These coordinates de-
fine a di↵eomorphism transformation �Xx that we can
use to push-forward each BH term of the metric and

build an inpiralling superimposition. In short, (a) the
X

a coordinates are the geodesic coordinates of an ac-
celerated worldline s

a(t), describing the orbit of a BH;
(b) for a moving BH, we associate the Harmonic metric
with the X

a coordinates, so we need to transform from
X

a to x
a using the Jacobian matrix, to build the metric

in the global frame. Superimposing the two BH terms
and performing this transformation for each term, with
worldlines s
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(t), we have explicitly:
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where the tensors are transformed through the Jacobian
of the coordinates X

a

A
(x). We still have to supplement

the metric with the position, velocity, and acceleration
of the BHs. In the case of a BBH, we can obtain those
solving the PN equations of the system in Harmonic co-
ordinates, as we show in next section.

C. Post-Newtonian trajectories for spinning BH
binaries

LC: Please re-check if all this makes sense

(Hiro, Brennan?)

Let us assume that the BHs have (anti-)aligned spins,
so we do not consider orbital precession. We also as-
sume that the orbit of the binary has circularized and
the system is well described by the so-called adiabatic
approximation. In this case, the inspiral is driven by the
loss of binding energy of the orbit, E, balanced by the
gravitational wave flux of energy, F , and change in mass
Ṁ :

Ė = �F � Ṁ. (25)

From this equation, we can obtain the orbital phase,
�(t), and separation, r12(t), of the system. In the case of
quasi-circular orbits, the separation r12 is linked to the
orbital frequency through the relativistic generalization
of Kepler’s law [11]. We solve for the orbital phase first,
following the TaylorT4 scheme for non-precessing bina-
ries [17, 18]. We start making a change of variable to
the (gauge invariant) parameter v := (Md�/dt)1/3, so
we can write Eq. 25 as two equations:

dv

dt
= �F(v) + Ṁ(v)

dE(v)/dv
, (26)

d�

dt
= v

3
/M. (27)

We use explicit expressions at 3.5 PN order for E(v),
F(v), and Ṁ(v) for a non-precessing binary from Ref.
[19]. The TaylorT4 scheme consist in expanding the right
hand side of Eq. (26) in a Taylor series to the proper PN

• Old Method: Matching :  Kerr+Post-Newt.+Post-Minkowski 
• Non-spinning version used in all our previous BBH-Disk work; 
• Spinning version is too expensive: 
• Includes retarded time integral for all xa;

• Use an approximate spacetime leading up to merger to most 
efficiently build accretion flow to a “steady” or more natural state.  

• New Method: Superposed Kerr-Schild:   
• Boosted set of Spinning BHs in Harmonic Cook-Scheel coordinates; 
• Significantly more computationally efficient than Matching;  
• BH trajectories still governed by 2.5PN theory; 
• Yields comparable vacuum sol’n as that of Matching; 
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yKS = yH + M

h (r � M)xH + ayH

(r � M)2 + a2

i
, (8)

zKS = zH + M

h
zH

r � M

i
, (9)

where we have:

r � M =
p

(Q + W )/2, W :=
q
Q2 + 4a2z2

H
, (10)

and

Q := r
2

H
� a

2
, r

2

H
:= x

2

H
+ y

2

H
+ z

2

H
. (11)

The space components are thus related by the elegant
relation:

(xi

KS
� x

i

H
)�ij(x

j

KS
� x

j

H
) = M

2
. (12)

We analyze more features of this Harmonic system
in Appendix A. If we apply this transformation to the
Cartesian Minkowski part of the Kerr-Schild metric (1):

⌘
H

ab
(a,M) =

@x
a
0

KS

@x
a

H

@x
b
0

KS

@x
b

H

⌘a0b0 , (13)

we note that the transformed quantity ⌘
H

ab
(a,M) now de-

pends on the spin and mass of the black holes. However,
we can still write this as a flat Cartesian metric plus a
source term:

⌘
H

ab
(a,M) = ⌘ab + MA(a,M)ab, (14)

where ⌘ab is again the Cartesian Minkowski metric. It
can be shown, however, that A(a,M)ab is well-behaved
at space infinity:

A ⇠ 1/r, for r ! 1. (15)

The second term of the Kerr-Schild metric can be
transformed in the same manner and is also well behaved
at infinity. We conclude that the Kerr metric in Har-
monic coordinates can be written as a background plus
a BH term, suitable for superimposition as:

gab = ⌘ab + MHab, (16)

where Hab := 2Hl
H

a
l
H

b
+ Aab. These expressions are

rather long for spinning black holes. Details of the cal-
culations and full expressions are available online in [?
].

In these coordinates, we shall a build an e↵ective met-
ric of the form:

gab = ⌘ab + �
⇤

(1)

⇣
M1H(1)

ab

⌘
+ �

⇤

(2)

⇣
M2H(2)

ab

⌘
, (17)

where �
⇤

(1)
and �

⇤

(2)
are transformations that boost the

black hole terms to describe the global metric of a bi-
nary black hole system, using a Post-Newtonian approx-
imation for the trajectories. We show how to build this
transformation in the next section.

B. Moving superimposed black holes with PN
trajectories

The Kerr metric in Harmonic coordinates (16) rep-
resents a BH at rest with respect to an asymptotically
inertial frame. In order to describe a uniformly moving
BH space-time we can apply a Lorentz boost transforma-
tion and convert our coordinates to boosted coordinates,
where the black hole is seen as having a non-null veloc-
ity with respect to the asymptotically inertial frame (c.f.
Ref. [15]). Physical quantities at spatial infinity such as
the ADM mass transform as four-vectors in Minkowski
space-time; for instance, the asymptotic observer will
measure a mass MB = �M for a boosted BH, where M

is its rest-mass. This is simply a frame transformation
and it does not change gauge invariant quantities such as
the Ricci or Kretschman scalars.

Let us suppose now that the BHs move in an inspi-
ralling orbit with respect to the origin of a (Cartesian)
coordinate system O, with their trajectories given by:

sA(t) = (t,~sA(t)) ⌘ (�A⌧A,~sA(⌧A)), (18)

for A = BH1,BH2, being ~sA(t) the PN spatial trajec-
tories, ⌧A the proper time, and �A the Lorentz factor.
Through out this work, we assume that the BH spins are
(anti-)aligned so there is no precession and the orbit lies
on the xy plane.

For our BBH metric, we are going to superimposed
and boost two terms Hab in (16). We build this time-
dependent boost as a coordinate transformation from the
BH frame, O0{Xa}, to the (global) center of mass frame
O{xa}. In O0{Xa}, the BH is at rest and its metric is
given by (16), while in the global coordinates O{xa} we
want to find, the BH is moving according to the worldline
(18). Note that this transformation is a generalized boost
since the BHs are not in uniform motion, i.e. the BH
coordinates {Xa} are non-inertial coordinates.

The natural (pseudo-Cartesian) coordinates associated
with the frame of an accelerated worldline are called
Fermi Normal coordinates [16? ]. This widely used co-
ordinate system generalize the boost transformation for
time-dependent velocities (see Ref. [? ] for details). Let
say we want to build this coordinate transformation for a
given event e on spacetime (see Figure II B). First, find
the proper time for which s

a(⌧) is simultaneous to e in the
non-inertial BH frame. Then define the time coordinate
of the system O0 to be the proper time of the worldline
X

0 = T = ⌧ . Finally, assume that the hypersurface or-
thogonal to the worldline is approximately Euclidean, so
the event e described in the global coordinate system O
is connected with X

a as:

x
a = s

a(⌧) + X
i
e
a

i
(⌧), (19)

where ei are the components of the orthonormal basis
carried by the BH. In order to find the coordinate trans-
formation we thus need to find the components of the
orthornomal basis of the BH in the global frame. Let us
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III. ANALYSIS OF THE SPACETIME METRIC

In this section, we test the global validity of our SHPN
metric (24). The metric of a BBH system must sat-
isfy Einstein’s field equation in a vacuum, and thus the
Ricci tensor must be zero. In numerical relativity, viola-
tions of Einstein’s equation are tracked looking atusing
the Hamiltonian and momentum constraints. Here, we
shall also focus on four-dimensional quantities to quan-
tify deviations from the exact solution. In particular,
following Ref. [59, 68], we investigate the Ricci scalar,
R := g

ab
Rab, where Rab is the Ricci tensor. Violations

of the Ricci scalar R are not absolute and, thus, they
are only meaningful when compared with other quanti-
ties. For instance, if we have that |R(t1)| > |R(t0)| for
t1 > t0, we can state that the approximate metric has de-
teriorated or deviated from a vacuum solution over time.
Similarly, we can compare the Ricci scalar of di↵erent
systems or at di↵erent points in space to assess locally
where the metric is a better approximation to a vacuum
solution.
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FIG. 2. Determinant of superposed metric for di↵erent values
of the spin and separation of r12 = 20M . Note that the curves
for di↵erent spins are very similar. For comparison, we include
the determinant of the matching metric for � = 0.

We also compare the validity of our solution with the
alternative approach presented in Refs. [59, 68], where
an analytical metric is built by stitching di↵erent approx-
imated solutions of Einstein’s equations at three charac-
teristics zones of a binary compact system, namely, the
Inner-Zone (IZ), the Near-Zone (NZ), and the Far-Zone
(FZ) [103, 104]. This so-called asymptotic matching pro-
cedure brings all these di↵erent parts into the same har-
monic coordinate system and the global metric can be

written as:

gab = (1 � fFZ)
n
fNZ

⇥
fIZ,1 g

(NZ)

ab
+ (1 � fIZ,1) g

(IZ1)

ab

⇤

+(1 � fNZ)
⇥
fIZ,2 g

(NZ)

ab
+ (1 � fIZ,2) g

(IZ2)

ab

⇤o

+fFZ g
(FZ)

ab
, (30)

where transition functions fi are used to go from one
zone to the other. This analytical metric, however, is
computationally expensive and complex to handle. The
Jacobians required to stitch the di↵erent parts of the met-
ric into the same coordinate system are very long, and
many operations are required to compute them at each
timestep. Moreover, for the spinning case, the matching
procedure renders the metric prohibitively expensive for
MHD simulations. In our new approach, we lose some
accuracy in comparison with the matching metric but we
gain much more e�ciency.

A. Spacetime scalars

Although the metric is analytical, we compute its
spacetime scalars numerically as it is faster and more
practical to incorporate the PN trajectories. We use a
C-based code that implements fourth-order finite di↵er-
ences in a Cartesian grid for the derivatives of every met-
ric function. The convergence analysis of these methods
is presented in Appendix B.
We are interested in using the metric in the inspi-

raling regime, where the PN approximation holds, and
the system is emitting a significant amount of gravita-
tional radiation. We explore the characteristics of the
system for a fiducial configuration, with a separation of
r12(t0) = 20M , equal BH masses, and the adimensional
spin parameter, � := a/M , in the interval 0 < � < 0.9.
As a first check of consistency, we analyze the metric

determinant
p

�g. In Figure 2, we plot the determinant
for a separation of r12 = 20M and several values of the
spin parameter �, along with the determinant for the
matching metric. We see that for all these values, the
determinant for the superposed metric is globally well-
behaved, free of pathologies, and similar to the matching
space-time.
In Figure 3, we plot some components of both met-

rics. It is interesting to note that the gtt component of
the SHPN metric is globally similar to the matching one,
meaning that the e↵ective PN potential of both space-
times is much akin [64]. The di↵erences between the
two metrics are important in the transition regions and
the Far-Zone. In the latter, the matching metric incor-
porates the post-Minkowski background of gravitational
waves, while our new SHPN is asymptotically flat; how-
ever, we do take into account the gravitational radiation
losses in the trajectories of the BHs.
In Figure 4, we plot the Ricci scalar of the SHPN met-

ric over the positive x axis at z = y = 0, for di↵erent
values of spin, and we compare it with the Ricci scalar of
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FIG. 3. Absolute value of several metric components for the superposed and matching metric in the fiducial configuration.
Note that the superposed metric components are much smoother than the matching metric because there are no transition
regions.

the matching metric for a binary of the same characteris-
tics. First, we see that R varies very little under di↵erent
spin parameters, consistent with Ref. [68]. Note that the
matching metric is better in the IZ but the violations are
worse at the transition regions outside the ISCO, where
the SHPN is smoother and performs better. A good met-
ric accuracy in this region is an important feature for de-
termining the correct gas dynamics of an accreting disk
near the hole. In Figure 5, we show an equatorial plot of
the Ricci scalar. As expected, the higher violations are
concentrated in the middle region between the BHs and
drop sharply with distance. In Figure 6, we plot the Ricci
violations for di↵erent mass-ratios q := M1/M2. We find
the values of R depend smoothly on q, improving in the
middle region for smaller q.

Besides R, we can explore other curvature scalars to
assess the global behavior of the metric. In particular,
considering the ADM equations for a general spacetime,
we can define the Hamiltonian constraint H as:

H := 3
R+K � KabK

ab = 16⇡⇢̃, (31)

where 3
R is the spatial Ricci curvature, Kab the extrinsic

curvature, and ⇢̃ the energy density of matter. For our
BBH vacuum metric, a non-zero H means that the space-
time has “fake mass” due to the approximation. This

will introduce errors in the true gravitational potential
and thus in the geodesic motion of matter. Since we
are interested in using this spacetime as a background
scenario for evolving an MHD fluid, it is important to
analyze this quantity and its evolution. We consider the
volume-integrated value of H as a measure of the total
fake mass introduced by the approximated metric:

Mfake =
1

16⇡

Z

V

H dV. (32)

Considering a cube of radius r = 50M around the cen-
ter of mass, we can track the evolution of Mfake for di↵er-
ent orbital separations. As we show in Figure 7, this fake
mass is overall small with respect to the total mass of
the BBH in both SHPN and matching metric but starts
increasing exponentially at ⇠ 8M , where the PN approx-
imation breaks.

Finally, in Figure 8, we plot the Ricci scalar, the
Hamiltonian constraint, the square root of the Momen-
tum constraints, M, and the Kretschmann scalar, K :=
RabcdR

abcd, for the SHPN metric. We observe here that
the Hamiltonian constraint and the Ricci scalar have sim-
ilar behaviors, indicating that the errors of the approxi-
mation come essentially from the fake mass component.
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FIG. 12. Left : Ergosphere region of Kerr BH with spin � = 0.9 for Kerr-Schild coordinates (blue) and harmonic coordinates
(orange). Note that the surfaces in harmonic coordinates are more oblique compared with the Kerr-Schild coordinates. The
radius of the singularity (green) is the same for both coordinate systems. Right : Ergosphere regions for a x-boosted harmonic
Kerr BH with spin � = 0.9 for di↵erent velocities (v/c = 0, 0.1, 0.5, 0.9). The horizon (red) and singularity (green) are the
same in each case, but the ergosphere region increases with increasing velocity.

is bigger than �H. For performing high-spin simulations
with the harmonic coordinates, one could artificially re-
move the singularity by implementing a modification of
the metric inside the horizon, e.g., modifying the function
rBL(xH).

FIG. 13. Convergence factor of our numerical scheme for
di↵erent regions. In the top panel we use h/M = 0.0125,
in the middle panel h/M = 0.1, and in the bottom panel
h/M = 0.8.

Note that the Cartesian Kerr-Schild coordinates used
here are not the usual coordinates that accretion disk

theorists call ‘Kerr-Schild’ [115, 116]. The ‘accretion-
disk Kerr-Schild’ coordinates are a modification of the BL
coordinates that renders the metric horizon-penetrating
but maintains the singularity at rAKS = rBL = 0. The
‘Cartesian Kerr-Schild’ coordinates that we use here are
more common in numerical relativity and appears in the
original work of Kerr [90, 117].

Finally, let us note that our spacetime contains moving
BHs, boosted with respect to the asymptotically flat re-
gion. This means that the morphology of the ergosphere
would be di↵erent from a static BH and these di↵erences
can be significant for high velocities. As discussed in
Ref. [94], even a non-spinning BH acquires an ergosphere
when the BH is boosted. In the case of a spinning BH,
we can see from Figure 12 that the ergosphere increases
when the BH has higher velocities.

Appendix B: Convergence tests

Since we are using a finite di↵erence scheme for com-
puting the metric and connection derivatives, we show
here the convergence to the analytical solution of the
fourth-order discretization. As explained in Ref. [68],
since the metric spans several length scales, we need dif-
ferent mesh spacing to resolve the solution. Given a nu-
merical quantity U , we explore the convergence factor,
Qh(U), defined as:

Qh(U) :=
U

(4h) � U
(2h)

U (2h) � U (h)
, (B1)

v=0.9
v=0.5

v=0.1

v=0.0

Ergoregion varies with spin and velocity:

—> Consequences to energy extraction eff.;



• Simulations of only circumbinary disk 
region, starting from Noble++2012 
conditions, only changing spin and using 
Superposed metric;   Equal masses, q=1; 

• Ran longer than before, reached a better 
steady state; 

• Circumbinary dynamics & lump largely 
unaffected by spin aligned with orbital 
angular momentum;   

• Again, light curve modulated by the beat 
mode and the lump’s orbital frequency; 

• Measured the realization variance by 
performing runs w/ different sets of 
random perturbations to the initial data;

• “b20”      = 20M separation 
• “-spins”  = spins retrograde to orbit 
• “+spins” = spins prograde to orbit 
• “v0-2”     = no spins, different random 

                  1% pressure noise

a1,2/M1,2 = +/- 0.9 

Lopez Armengol, Combi, Campanelli, Noble, 
Krolik, Bowen, Avara, Mewes, and Nakano, 
ApJ, 913, 16, (2021).
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Figure 13. Vertically integrated and �-averaged density ⌃(r) averaged over �t = 2⇥103M for the period t = 70 – 150⇥103 M
(violet to red curves). The dotted curve represents the initial data, and the dashed curve the average of colored curves.
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Figure 14. Fourier power spectrum of the accretion rate at the innermost radial boundary of the domain during the steady
state period (left), and of the radial position of the lump in the interval 40 ⇥ 103 M < t � tlump < 80 ⇥ 103 M (right). To
enhance the periodic behavior, we analyze the di↵erence of these quantities with adjusted polynomials of first order, and we
apply a Blackman-Harris window function.

Figure 15. Top: Accretion rate as a function of r averaged over �t = 20⇥ 103M in the period t = 70 – 150⇥ 103M (dark to
light curves), and the average over the full period (dashed, red).
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Figure 4. Integrated luminosity L (see Eq. (A6)) as a func-
tion of time for three of our runs.

Following Noble et al. (2012), many of our639

results will be expressed in units of ⌃0, the640

initial maximum value of the surface density641

⌃(r, �) (see Eq. (A1)). These values are ⌃0 =642

0.1070M
�1

, 0.1066M
�1

, 0.1066M
�1

, 0.1066M
�1 and643

0.1063M
�1 for runs b20-spins, b20 v0, b20 v1, b20 v2644

and b20+spins, respectively (see Table 1).645

5.1. Spin-Sensitive Results646

The spin of a BH has important e↵ects on matter or-647

biting near the horizon, but these e↵ects decline rapidly648

with radius; frame-dragging terms in the e↵ective grav-649

itational potential for spinning black holes are / r
�3

650

(see Appendix B). For this reason, we do not expect651

the spin of the BHs will have a direct impact on the652

bulk properties of the circumbinary disk, whose inner653

edge lies at r ⇡ 50M . The accretion streams, on the654

contrary, reach distances close enough to the black hole655

that these e↵ects may be relevant.656

Since the accretion streams carry nearly all the mat-657

ter accreted by the binary, we begin by exploring the658

e↵ect of the spins on the accretion rate. For all three659

non-spinning cases, the time-averaged accretion rate at660

the inner boundary during the steady state period is661

(see Fig. 3) (5.0 ± 0.4) ⇥ 10�3
p

Mb ⌃0. Strikingly, runs662

b20-spins and b20+spins deviate from this mean value663

by +5.7 and �1.8 standard deviations, respectively. In664

other words, the circumbinary accretion rate is enhanced665

(reduced) by +45% (�14%) if the spin of the BHs are666

anti-parallel (parallel) to the angular momentum of the667

binary.668

As found in previous works with similar parameters669

(Shi et al. 2012; Noble et al. 2012), a portion of the670

falling streams receives enough angular momentum from671

the binary and is flung back to the circumbinary disk,672

impacting the inner edge and causing strong shocks673

whose dissipation contributes significantly to the lumi-674

nosity. Having found that the accretion rate is sensitive675

to spin, we might therefore expect that the luminosity676

is likewise. In particular, compared with non-spinning677

runs, the stronger streams of b20-spins should increase678

the total luminosity of the system, and the opposite for679

the weaker streams of b20+spins. In Fig. 4 we plot680

L as a function of time for our runs. The average of681

L during the steady state period of non-spinning runs682

was (1.76 ± 0.07) ⇥ 10�3
GM⌃0c

�2. The correspond-683

ing averages for b20-spins and b20+spins depart from684

this mean by +7.49 and �3.17 standard deviations, re-685

spectively, a very significant e↵ect. These di↵erences686

correspond to a change of +29% and �12% in the total687

luminosity of the system, respectively, with respect to688

non-spinning runs.689

Besides carrying the accretion flow and driving shocks690

that contribute to the integrated luminosity, the streams691

also play an important role in angular momentum trans-692

port. As they plunge toward the binary, the streams are693

subjected to strong torques by the binary. The por-694

tion of the stream flung back outward then transfers695

this added angular momentum to the inner edge of the696

circumbinary disk. As explained by Shi et al. (2012),697

because the local angular momentum J =
R

j
tp�gdV698

with j
µ = T

µ
� should be constant in a time-steady disk,699

this supplemental angular momentum is transferred to700

adjacent layers by internal stresses.701

To study the angular momentum budget of the cir-702

cumbinary disk, we unpack @r@tJ into its several com-703

ponents. We refer the reader to Appendix C of Noble704

et al. (2012) for the explicit expansion (see also Farris705

et al. 2011). Five stresses contribute: the gravitational706

stress TG, whose radial gradient produces the gravi-707

tational torque T
µ
⌫�⌫

µ�; the Maxwell stress @rM
r
�,708

which is the EM part of T
r
�; turbulent Reynold stresses709

@rR
r
� = ⇢�u

r
�u

�, resulting from local perturbations of710

the fluid velocity; the advected Reynolds stress A
r
� as-711

sociated with the mean velocities u
r and u

�; and the712

radiative stress F� from the radiative cooling function.713

Summed, these produce the local torque714

@r@tJ = @rTG � {F�} � @r {M
r
�} (46)

�@r {R
r
�} � @r {A

r
�} ,

In Fig. 5 we plot each term on the RHS of Eq. (47)715

as a function of r, averaged over the period t = 70716

– 150 ⇥ 103M . The total angular momentum flux717

(black) is approximately constant as a function of ra-718

dius, as expected for a steady state flow. In the cav-719

10 Lopez Armengol, et al. (2021)

b [M ] M (1,2) [M ] ⌦bin a(1,2) lin [M ] ⌃0 [M
�1]

b20-spins 20 0.5 b�3/2 �0.9M (1,2) 8.62 0.1070

b20 v0 20 0.5 b�3/2 0.0 8.60 0.1066

b20 v1 20 0.5 b�3/2 0.0 8.60 0.1066

b20 v2 20 0.5 b�3/2 0.0 8.60 0.1066

b20+spins 20 0.5 b�3/2 0.9M (1,2) 8.57 0.1063

Table 1. Properties of the binary system for our runs, and the initial values of lin and ⌃0. In every case the BHs separation is
fixed to b = 20M , they have equal masses M (1,2) = 0.5M , and move in Keplerian orbits with ⌦bin = b�3/2. We explore di↵erent
values for the spins of the BHs. Notice runs b20 v0, b20 v1 and b20 v2 have identical settings. They only di↵er on the random
initial perturbations on the internal energy u.
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Figure 3. Accretion rate integrated at the innermost boundary of the grid, as a function of time. From this plot, we distinguish
three dynamical stages: MRI growth (t = 0 – 30 ⇥ 103M), relaxation (t = 30 – 75 ⇥ 103M), and steady state (t = 75 –
150⇥ 103M).

sequent relaxation (t = 30 – 75 ⇥ 103M), in which the605

accretion rate progressively diminishes over time; and a606

steady state (t = 75 – 150 ⇥ 103M). The first is a tran-607

sient period, and will not be included in our analysis.608

The second stage is still a↵ected by the initial transient609

and will not be used for our main conclusions. We will610

focus, instead, on the steady state epoch.611

We organize our results in three subsections. First, we612

focus on the properties of the plasma that are sensitive613

to the spins; these properties are mostly related to the614

cavity and the accretion streams. Then, in the second615

subsection, we interpret these spin-sensitive results in616

terms of the gravitational potential of the linearized SKS617

metric. Finally, in the third subsection, we describe the618

bulk properties of the circumbinary disk, all of them619

insensitive to the spin of the BHs.620

Because MHD turbulence is a fundamental property621

of accretion disks, all our results are subject to intrinsic622

variance. This fact complicates the identification of sub-623

tle physical processes such as the e↵ect of the spins on624

the circumbinary disk. To quantify this variance, we use625

the subset of runs b20 v0, b20 v1, and b20 v2. The pa-626

rameters of these three runs are identical and their only627

di↵erences arise from stochastic processes triggered by628

random initial perturbations in the internal energy of629

the fluid. Specifically, given a physical quantity Pi with630

i = 0, 1, 2 for runs b20 v0, b20 v1, and b20 v2, we will631

express the result as hPia=0 ± �P , where632

hPia=0 =
1

3

2X

i=0

Pi (43)

is the mean of Pi over the non-spinning runs, and633

�P =

vuut
2X

i=0

(hPia=0 � Pi)
2

3 � 1
(44)

is a coarse measure of the corresponding standard devia-634

tion. To determine whether a run with di↵erent param-635

eters di↵ers significantly from the three non-spinning636

runs, we measure the deviation Z of its prediction P 0,637

in units of standard deviations by638

Z =
P 0 � hPia=0

�P
. (45)
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• Anti-parallel spins enhance: 
• Accretion rate; 
• Luminosity;  
• Surface density; 

• Enhancement due to deepening of effective 
potential as spins grow negative: 

• Frame dragging acts to lag (lead) accretion 
streams for anti-parallel (parallel) spins; 

Accretion 
Rate Luminosity

Parallel 
Spins 86% 88%

Non-
spinning 100% 100%

Anti-parallel 
Spins 145% 129%
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mentum at the inner-edge radius falls in so slowly that806

the binary torques raise its angular momentum and the807

gas is cast back out to the circumbinary disk. Only gas808

with angular momentum at least ' 15% less than that809

of a circular orbit can fall in quickly enough to avoid ac-810

quiring too much angular momentum. Such gas parcels811

must, in addition, begin their fall from a specific angle812

relative to the binary separation axis. The upper limit813

for the angular momentum J of the fluid to be accreted is814

well approximated by the condition �e↵(rin)  0, where815

�e↵ is the gravitational e↵ective potential of the binary,816

evaluated at the inner boundary of the domain. As de-817

rived in Eq. (B26):818

�E↵ = �M

r
� 1

16

b
2
M

r3
+

J
2

2r2
+

MJ

3r3

✓
2a +

L

4

◆
. (48)

The condition �e↵(rin)  0 is equivalent to J 819

(6.54, 6.51, 6.48) for a = (�0.9, 0, 0.9), respectively. In820

other words, spins opposite (parallel) to the angular821

momentum of the binary extend (reduce) the volume822

of infalling trajectories in the phase-space of position823

and velocity of the orbiting fluid. This fact explains824

the enhanced (reduced) accretion in the run b20-spins825

(b20+spins).826

In Fig. 8 we noticed the accretion streams for827

b20-spins (b20+spins) lie behind (ahead) in �cor with828

respect to non-spinning runs. In other words, the gas829

swings in azimuth by a smaller (larger) angle while830

traversing the cavity before passing through the inner831

boundary. This is also consistent with frame-dragging832

e↵ects.833

5.3. Spin-Insensitive Results and Comparison with834

Previous Works835

In this subsection, we describe the properties of the836

circumbinary disk that are not significantly a↵ected by837

spins, but the length of our simulations has revealed838

new aspects of them, not seen in previous, shorter sim-839

ulations.840

In binaries with mass-ratio close to unity and low841

orbital eccentricity, a remarkable m = 1 mode in the842

�-distribution of matter develops in the radial range843

2b < r < 4b; the so-called lump. This lump arises as844

a result of phase-coherence in the trajectory of matter845

that falls a short way but then is propelled back out af-846

ter the binary torques add to its angular momentum (see847

Shi et al. 2012; Noble et al. 2012; D’Orazio et al. 2013;848

Farris et al. 2014; Miranda et al. 2016; Tang et al. 2017).849

As we will show, our longer simulations reveal that the850

dynamics of the lump are predictable from the time of its851

formation, and its orbit stabilizes after �t ⇠ 40⇥103M .852

Figure 9. Power of m = 1 mode of the vertically integrated
density, as function of radii and time, for b20 v2. We notice
the growth and saturation of the lump at 2b < r < 4b. The
dashed line represents the moment of lump formation tlump.

To characterize the amplitude of the lump, we calcu-853

late the power of the Fourier modes m = 0 and m = 1854

in the vertically integrated density as a function of ra-855

dius and time (see Eq. (A8), and Cuadra et al. (2009),856

Noble et al. (2021), in prep.). We denote these modes857

A0(t, r) and A1(t, r), respectively. In Fig. 9, we plot858

A1(t, r) for b20 v2 and, indeed, we notice the growth859

and saturation of the lump at 2b < r < 4b.860

To determine the time tlump when the lump forms, we861

integrate Am(t, r) over the radial range 2b < r < 3b862

and define tlump as the time when the ratio of this in-863

tegral of A1(t, r) to the total surface density (this in-864

tegral of A0(t, r)) is larger than 0.2. To visualize the865

di↵erent tlump for each run, in Fig. 10 we plot the evo-866

lution of the ratio of the m = 1 and m = 0 inte-867

grals for our runs. For non-spinning runs, the lump868

forms at 36390, 64650, 47550 M , resulting in an average869

tlump = (5.0±1.5)⇥104M . In Fig. 11 (top, right) we plot870

the surface density ⌃(r, �) (see Eq. (A1)) at t = tlump871

for b20 v0, where we notice the recently formed lump872

in the positive y hemisphere. For runs b20-spins and873

b20+spins, the lump forms at 50280M and 39690M re-874

spectively, in concordance with non-spinning values.875

To characterize the orbital dynamics of the lump, we876

define rlump(t) as the radial position of the maximum877

value of A1(t, r) as a function of time (see Fig. 9). We878

Lopez Armengol, Combi, Campanelli, Noble, 
Krolik, Bowen, Avara, Mewes, and Nakano, 
ApJ, 913, 16, (2021).



Circumbinary + 
Mini- Disk Regions

• Starting from same initial accretion flow conditions; 
• Because of smaller ISCO, the volume of stability in mini-

disk region increases for larger (parallel) spin;  
—>More persistent mini-disks; 
—> Longer inflow time scales; 
—> Comparable accretion rates; 
—> Smaller fluctuations at 2x beat freq.

Accretion onto Spinning BBHs6

Figure 7. Power spectral density of the mini-disk’s masses for
SHPN06 (upper panel) and M0 (lower pannel) using a Welch algo-
rithm with a Hamming window size and a frequency of 10M . The
confidence intervals at 3� are shown as shadowed areas.

with 2⌦beat. In SHPN06 , however, the inflow time of the
mini-disks is larger and the depletion period of a mini-
disk briefly coexists with the filling period of the other
mini-disk, reducing the variability of the total mass.
Finally, because we use a spherical grid with a central

cutout, we cannot analyze the e↵ects of the sloshing of
matter between mini-disks (Bowen et al. 2017). To es-
timate how much mass we lose through the cutout, we
checked the accretion rate at the inner boundary of the
grid, where the gas exits the simulations. This mass loss
constitutes, in average, only a 5% of the mass acreted
by the BHs, although the instantenous accretion can be
close to 20% of the accretion onto a BH. This might
change some dynamical features of the mini-disk and
produce additional electromagnetic signatures. We do
not expect, however, that this fact would alter the main
conclusions of this work, namely, the overall di↵erences
between mini-disks in spinnings and non-spinning BBH.
In the next section, we analyze the general structure of
the minidisks and the e↵ects of the spins.

3.2. Structure and orbital motion in mini-disks

As we saw before, the main change introduced by the
BH spin is the amount of mass contained in the mini-
disks over a cycle. In this section, we analyze how this
mass increase changes the structure of the mini-disks
compared with non-spinning black holes, and what is
the angular momentum of the material that circularize
around the BH.
In Figure ??, we plot the surface density in both

SHPN06 and M0 , for the same orbital phase at the 7th
orbit. In this plot, the mini-disk around BH1 (right side)
is at the high peak of the mass cycle. In both simulations
here, we can clearly note the predominant lump stream
plunging directly into the hole. This occurs on top of
a mini-disk structure, which is denser in SHPN06 . On
the other hand, we observe that BH2 on the left, in its
low state, has a disk-like structure in SHPN06 , while the
material is mostly accreted in M0 .
We further quantify the di↵erences computing the sur-

Figure 8. Surface density average snapshot for SHPN06 (upper
row) and M0 (lower row) at t = 4000M and t = 4060M respectively,
where the phase of the binary is the same in both simulations.
White dashed lines indicate the truncation radius and thick white
lines the ISCO. In this figure, the sense of rotation of the binary is
counter-clockwise

Figure 9. Surface density averaged in the azimuthal ranges
��1 = (⇡/4, 3⇡/4) (positive axis) and ��2 = (5⇡/4, 7⇡/4) (nega-
tive axis) for BH1, and averaged in time over the low-state (lower
panel) and high-state (upper panel) of the mass fraction. For ref-
erence, we indicate the direction of the orbital BH velocity

face density of the mini-disk around BH1, averaged in
time, and averaged in two ranges of �BH representing
the front and back of the mini-disk with respect to the
orbital motion. In Figure 9 we observe that the surface
density is higher in SHPN06 by a factor of ⇠ 2. For both
simulations, the mini-disks accumulates more material
at the front, corresponding to the region where it cap-
tures the lump stream. In SHPN06 , the density peaks are
closer to the BHs and the density profile is more steep
near the ISCO. At the back of the mini-disk, the surface
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Figure 12. Specific angular momentum as a function of radius for
S06 (upper panel) and S0 (lower panel) for both BHs. The time-
averages are in solid lines, and the individual values are the very
thin lines. The Keplerian value is plotted in dashed green lines.

gular momentum in the BH frame:

h¯̀i⇢ := h�u�̄/ut̄i⇢. (17)

In Figure 12, we show the time-average of h¯̀i⇢ for both
BHs and both simulations. In absolute terms, h¯̀i⇢ is
nearly the same for both the spinning and non-spinning
cases, with the spinning case only slightly greater. This
is because the specific angular momentum of the mate-
rial that falls into the cavity is essentially determined by
the stresses at the inner edge of the circumbinary disk.
These stresses are determined by binary torques and the
plasma Reynolds and magnetic stresses (Shi et al. 2012;
Noble et al. 2012). Indeed, in Lopez Armengol et al.
(2021) we found that these quantities depend weakly on
spin outside the cavity. On the other hand, their rela-
tion to their respective Keplerian (circular orbit) values,
¯̀
K(r̄,�), is quite di↵erent because they depend strongly

on the spin. In S06, the distribution of the angular mo-
mentum tracks closely the Keplerian value. For S0, the
behavior is always sub-Keplerian on average.

Let us assume that the angular momentum distribu-
tion of the circumbinary streams is independent of spin
for a fixed binary separation and mass-ratio. In that case,
our simulation data indicate that the angular momentum
with which the streams arrive at the mini-disk would be
greater than the ISCO angular momentum when the BH
spin is � > 0.45. This estimate could serve as a crude
criterion for determining whether mini-disks form in rel-
ativistic binaries.

We can also use the specific angular momentum to dis-
tinguish the material in the mini-disk with high angular
momentum that manages to orbit the black hole from the
low angular momentum part that plunges in. To do so,

Figure 13. Sub-Keplerian and (super-)Keplerian components of
the mass for BH1 in S06 (upper panel) and S0 (lower panel)

we recompute the mass as in equation (12), taking fluid
elements with ¯̀< ¯̀

K and ¯̀ � ¯̀
K separately. In Figure

13 we plot the evolution of the sub-Keplerian and super-
Keplerian mass components for BH1 in S06 and S0. In
S06 after the initial transient, a little more than half of
the mass comes from relatively high angular momentum
fluid. As the system inspirals, however, the truncation
radius decreases, and the masses of these two components
become nearly equal. In S0, on the other hand, most of
the fluid has relatively low angular momentum. This
sub-Keplerian component has roughly the same mass in
S06 and S0, while the mass of the high angular momen-
tum component of the fluid is much greater in S06, as
expected.

Although a fair amount of the mass in the mini-disk has
relatively high angular momentum and manages to orbit
the black hole in S06, the accreted mass onto the BH,
in both simulations, is always dominated by the low an-
gular momentum part that plunges directly. To demon-
strate this, we compute the average accretion rates for
low and high angular momentum particles as we did with
the mass. Figure 14 shows that the total accretion rate
onto the BH has a flat radial profile in both S06 and S0,
with very similar average values. Accretion by low angu-
lar momentum particles dominates at all radii, although
the high angular momentum contribution becomes com-
parable to the low angular momentum one near the ISCO
for S06.

We can also compute the density-weighted specific en-
ergy, E := h�ut̄i⇢, the mass-weighted sum of rest-mass,
kinetic, and binding energy for individual fluid elements.
As can be seen in Figure 15, on average, fluid in the
mini-disks around the spinning black holes is more bound
than in the non-spinning case. On the other hand, fluid
in both S06 and S0 is more bound than particles on cir-
cular orbits. Near the ISCO, the specific energy drops
sharply inward in both cases, as is often found when ac-
cretion physics is treated in MHD: stress does not cease
at the ISCO when magnetic fields are present.

When the mini-disk is in its high state, the spiral
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Figure 12. Specific angular momentum as a function of radius for
S06 (upper panel) and S0 (lower panel) for both BHs. The time-
averages are in solid lines, and the individual values are the very
thin lines. The Keplerian value is plotted in dashed green lines.

gular momentum in the BH frame:

h¯̀i⇢ := h�u�̄/ut̄i⇢. (17)

In Figure 12, we show the time-average of h¯̀i⇢ for both
BHs and both simulations. In absolute terms, h¯̀i⇢ is
nearly the same for both the spinning and non-spinning
cases, with the spinning case only slightly greater. This
is because the specific angular momentum of the mate-
rial that falls into the cavity is essentially determined by
the stresses at the inner edge of the circumbinary disk.
These stresses are determined by binary torques and the
plasma Reynolds and magnetic stresses (Shi et al. 2012;
Noble et al. 2012). Indeed, in Lopez Armengol et al.
(2021) we found that these quantities depend weakly on
spin outside the cavity. On the other hand, their rela-
tion to their respective Keplerian (circular orbit) values,
¯̀
K(r̄,�), is quite di↵erent because they depend strongly

on the spin. In S06, the distribution of the angular mo-
mentum tracks closely the Keplerian value. For S0, the
behavior is always sub-Keplerian on average.

Let us assume that the angular momentum distribu-
tion of the circumbinary streams is independent of spin
for a fixed binary separation and mass-ratio. In that case,
our simulation data indicate that the angular momentum
with which the streams arrive at the mini-disk would be
greater than the ISCO angular momentum when the BH
spin is � > 0.45. This estimate could serve as a crude
criterion for determining whether mini-disks form in rel-
ativistic binaries.

We can also use the specific angular momentum to dis-
tinguish the material in the mini-disk with high angular
momentum that manages to orbit the black hole from the
low angular momentum part that plunges in. To do so,
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Figure 13. Sub-Keplerian and (super-)Keplerian components of
the mass for BH1 in S06 (upper panel) and S0 (lower panel)

we recompute the mass as in equation (12), taking fluid
elements with ¯̀< ¯̀

K and ¯̀ � ¯̀
K separately. In Figure

13 we plot the evolution of the sub-Keplerian and super-
Keplerian mass components for BH1 in S06 and S0. In
S06 after the initial transient, a little more than half of
the mass comes from relatively high angular momentum
fluid. As the system inspirals, however, the truncation
radius decreases, and the masses of these two components
become nearly equal. In S0, on the other hand, most of
the fluid has relatively low angular momentum. This
sub-Keplerian component has roughly the same mass in
S06 and S0, while the mass of the high angular momen-
tum component of the fluid is much greater in S06, as
expected.

Although a fair amount of the mass in the mini-disk has
relatively high angular momentum and manages to orbit
the black hole in S06, the accreted mass onto the BH,
in both simulations, is always dominated by the low an-
gular momentum part that plunges directly. To demon-
strate this, we compute the average accretion rates for
low and high angular momentum particles as we did with
the mass. Figure 14 shows that the total accretion rate
onto the BH has a flat radial profile in both S06 and S0,
with very similar average values. Accretion by low angu-
lar momentum particles dominates at all radii, although
the high angular momentum contribution becomes com-
parable to the low angular momentum one near the ISCO
for S06.

We can also compute the density-weighted specific en-
ergy, E := h�ut̄i⇢, the mass-weighted sum of rest-mass,
kinetic, and binding energy for individual fluid elements.
As can be seen in Figure 15, on average, fluid in the
mini-disks around the spinning black holes is more bound
than in the non-spinning case. On the other hand, fluid
in both S06 and S0 is more bound than particles on cir-
cular orbits. Near the ISCO, the specific energy drops
sharply inward in both cases, as is often found when ac-
cretion physics is treated in MHD: stress does not cease
at the ISCO when magnetic fields are present.

When the mini-disk is in its high state, the spiral

• Faster spins change the potential so that the accretion 
streams are no longer sub-Keplerian, allowing for gas to 
accumulate; 

• Mini-disks are 2x as massive with spins than without.
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Mini- Disk Regions

• Hydro and EM fluxes are both larger with spins; 
• Possible signature of helical field orientation in 

emission’s polarization?! 
• Poynting luminosity modulated at 2x beat freq. 

w/ lump;

Accretion onto Spinning BBHs
10

Figure 15. Meridional plot of a time average Poynting scalar for BH1 in SHPN06 (left) and in M0 (right)

Figure 16. Meridional plot of the plasma � parameter of BH1 in
SHPN06

curva.

Figure 17. .

Figure 18. .

The EM flux is modulated by the beat frequency of the
system and it is, in average, three times higher in SHPN06

. It has a secular increase and start decreasing at around
8 orbits. High peaks in SHPN06 coincide with the lump
accretion event around 12 orbits. At the end there is
more variability, as seen e.g. in the accretion rate. The
EM fluxes in 20M and 30M are similar in SHPN06 but
di↵ers a little in M0 . LC: explain this further Hydro
fluxes are more similar between SHPN06 and M0 and also
increase as a function of time. They di↵er between 20M
(just mini-disk outflows) and 30M (mini-disks outflows
+ some inner part of the circ disk).
We can also explore the EM fluxes around the individ-

ual BHs and track their evolution (Figure ??). Similar
behavior as we saw around the cavity. The decline is
more appreciated here and there is not much variabil-
ity. In both cases the e�ciency of the jet is around 5%.
FGLA: Agregar las curvas para los non-spinning?

Agregar definición de esa eficiencia. Hawley &

Krolik (2006) da algunos valores para single-BHs,

comparar . The Poynting fluxes are correlated with
the magnetic fluxes around the BH ISCO (Figure 20).
LC: Blandford Znajeck here? . FGLA: Agre-

gar definición de flujo magnético, y el caption.
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Figure 18. Meridional plot of a time average Poynting scalar for BH1 in S06 (left) and in S0 (right). The black hole is at x ⇠ 10M and
the center of mass is at x = 0M . The red lines represent the division between bound and unbound material, while the dot-dashed white
lines represent the magnetically dominated material.
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Figure 19. Evolution of the total Poynting flux measured in the
BH frame (dashed lines) and in the (inertial) center of mass frame
at 100 M(solid lines) for both S06 and S0. For the center of mass
fluxes, we use the retarded time t� r/hvi to account for the delay.

waves by LISA or pulsar timing arrays (PTA) remains at
least a decade into the future. Nevertheless, upcoming
wide-field surveys such as the Vera C. Rubin Observa-
tory, SDSS-V, and DESI, may discover many SMBBH
candidates through their electromagnetic emission.

In order to confirm the presence of a SMBBH, we need
to build accurate models and predictions of their elec-
tromagnetic signatures. Our GRMHD simulations will
be useful for this purpose: as a next step, in Gutiérrez
et al. (2021), we use these simulations to extract light
curves and spectra using ray-tracing techniques (Noble
et al. 2007; d’Ascoli et al. 2018) with di↵erent radiation
models and di↵erent masses. The results in this paper

Figure 20. Time average of Poynting scalar P projected on a
sphere of radius 60 M for spinning (left sphere) and non-spinning
(right sphere) for unbound elements of fluid.

constitute the foundations to interpret the underlying
physics of those predictions.

Circumbinary and mini-disk accretion onto an equal-
mass binary system has been largely studied in the past
in the context of 2D ↵�viscous simulations. These simu-
lations are particularly good for analyzing the very long-
term behavior of the system, evolving sometimes for 1000
orbits. Close to the black holes and at close separations,
however, the inclusion of 3D MHD and accurate space-
time dynamics becomes necessary in order to describe the
proper mechanisms of accretion and outflow. 2D ↵�disk
simulations are not able to include spin e↵ects and most
of them do not include GR e↵ects (see, however, Ryan
& MacFadyen (2017)). On the other hand, in this work
we analyze the balance of hydro accretion from the cir-
cumbinary streams and conventional accretion from the
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Figure 21. Hydro luminosity as a function of time measured in
the center of mass frame for S06 (green lines) and S0 (blue lines)
at di↵erent radii.

Figure 22. Power spectral density of the hydro (LH) and EM
luminosities (LEM) for S06 (thick lines) and S0 (dashed lines) at
100 M using a Welch algorithm with a Hamming window size and
a frequency of 10 M . The confidence intervals at 3� are shown as
shadowed areas for S06. The two main peaks are given by twice
the beat frequency, 2⌦beat = 1.4⌦bin, and the lump accretion pe-
riodicity ⇠ 0.22⌦bin

internal stresses of the mini-disk; to properly model the
latter, we need MHD. Moreover, the presence of a proper
black hole, and its horizon, makes the accretion processes
entirely self-consistent without adding adhoc sink condi-
tions as used in Newtonian simulations (see, however,
Dittmann & Ryan (2021)). Finally, 3D MHD simula-
tions are necessary to model magnetically-dominated re-
gions and jets. The connection of the accretion and the
production of electromagnetic luminosity was one of the
main motivations of this work, and impossible to analyze
in 2D hydro simulations.

Recently, Paschalidis et al. (2021) presented GRMHD
simulations of a system similar to the one analyzed in
this paper: equal-mass, spinning binary black holes ap-
proaching merger. It is then interesting to compare our
results and highlight the di↵erences with their model and
analysis. In their paper, they use a slightly higher spin
value (� = 0.75) and explore di↵erent spin configura-
tions, including antialigned and up-down directions with
respect to the orbital angular momentum. Their system
has di↵erent thermodynamics than ours, using an ideal-
gas state equation with � = 4/3 and no cooling. Their
focus is on the mass budget of the mini-disk (as in Bowen

et al. (2019)) and the electromagnetic luminosity when
spin is included. They report that spinning black holes
have more massive mini-disks and the electromagnetic
luminosity is higher, with quantitative measures similar
to what we find in this paper.

In our work, we analyze in great detail, for the first
time, the accretion mechanisms onto the mini-disk and
their connection to the circumbinary disk. We show
that the BHs accretes in two di↵erent ways: through
direct plunging of the stream from the lump’s inner edge
(that dominates the accretion), and through ‘conven-
tional’ stresses of the circular component orbiting the
mini-disk. This is qualitatively di↵erent than single BHs
disks and a direct consequenece of the short inflow time
determined by rISCO/rtrunc; for larger separations and
higher spins, we expect mini-disks to behave closer to
conventional single BH disks . Our simulations also dif-
fer significantly in the grid setup and initial data. We
start our simulations with an evolved circumbinary disk
snapshot, taken from Noble et al. (2012), which is al-
ready turbulent and presents a lump (starting the sim-
ulation from a quasi-stationary torus, the lump appears
after ⇠ 50 orbits at these seperations, once the inner
edge has settled). This is very important to accurately
describe the periodicities of the system given by the beat
frequency, which is set by the orbital motion of the lump.
These quasi-periodicities might be di↵erent if the ther-
modynamics change, e.g. if there is no cooling, although
currently there are no su�ciently long 3D GRMHD sim-
ulations of circumbinary disks exploring this. Interest-
ingly, we found that the Poynting flux is also modulated
by the beat frequency. For BBH approaching merger,
this constitutes a possible independent observable if this
periodicity is translated to jet emission. As expected,
for spinning BHs, we also found more powerful Poynting
fluxes, in agreement with Paschalidis et al. (2021).

With our careful analysis of the accretion onto the
mini-disks, we show that a disk-like structure survives for
longer as the binary shrinks when the black holes have
spin. Further explorations with higher spins will show
how far these structures survive very close to merger.

5. CONCLUSIONS

We have performed a GRMHD accretion simulation of
an equal-mass binary black hole with aligned spins of
a = 0.6 MBH approaching merger. We have compared
this simulation with a previous non-spinning simulation
of the same system, analyzing the main di↵erences in
mini-disk accretion and the variabilities induced by the
circumbinary disk accretion. Our main findings can be
summarized as follows:

• Mini-disks in S06, where BHs have aligned spins
� = 0.6, are more massive than in S0, where BHs
have zero spins, by a factor of two. The mass and
accretion rate of mini-disks have quasi-periodicities
determined by the beat frequency in both simula-
tions (see Section 3.2).

• The material in the mini-disk region can be sepa-
rated into two components of relatively high and
low angular momentum. The low angular momen-
tum component mostly plunges directly from the
lump edge, forming a strong single-arm stream.
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Figure 21. Hydro luminosity as a function of time measured in
the center of mass frame for S06 (green lines) and S0 (blue lines)
at di↵erent radii.
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Figure 22. Power spectral density of the hydro (LH) and EM
luminosities (LEM) for S06 (thick lines) and S0 (dashed lines) at
100 M using a Welch algorithm with a Hamming window size and
a frequency of 10 M . The confidence intervals at 3� are shown as
shadowed areas for S06. The two main peaks are given by twice
the beat frequency, 2⌦beat = 1.4⌦bin, and the lump accretion pe-
riodicity ⇠ 0.22⌦bin

internal stresses of the mini-disk; to properly model the
latter, we need MHD. Moreover, the presence of a proper
black hole, and its horizon, makes the accretion processes
entirely self-consistent without adding adhoc sink condi-
tions as used in Newtonian simulations (see, however,
Dittmann & Ryan (2021)). Finally, 3D MHD simula-
tions are necessary to model magnetically-dominated re-
gions and jets. The connection of the accretion and the
production of electromagnetic luminosity was one of the
main motivations of this work, and impossible to analyze
in 2D hydro simulations.

Recently, Paschalidis et al. (2021) presented GRMHD
simulations of a system similar to the one analyzed in
this paper: equal-mass, spinning binary black holes ap-
proaching merger. It is then interesting to compare our
results and highlight the di↵erences with their model and
analysis. In their paper, they use a slightly higher spin
value (� = 0.75) and explore di↵erent spin configura-
tions, including antialigned and up-down directions with
respect to the orbital angular momentum. Their system
has di↵erent thermodynamics than ours, using an ideal-
gas state equation with � = 4/3 and no cooling. Their
focus is on the mass budget of the mini-disk (as in Bowen

et al. (2019)) and the electromagnetic luminosity when
spin is included. They report that spinning black holes
have more massive mini-disks and the electromagnetic
luminosity is higher, with quantitative measures similar
to what we find in this paper.

In our work, we analyze in great detail, for the first
time, the accretion mechanisms onto the mini-disk and
their connection to the circumbinary disk. We show
that the BHs accretes in two di↵erent ways: through
direct plunging of the stream from the lump’s inner edge
(that dominates the accretion), and through ‘conven-
tional’ stresses of the circular component orbiting the
mini-disk. This is qualitatively di↵erent than single BHs
disks and a direct consequenece of the short inflow time
determined by rISCO/rtrunc; for larger separations and
higher spins, we expect mini-disks to behave closer to
conventional single BH disks . Our simulations also dif-
fer significantly in the grid setup and initial data. We
start our simulations with an evolved circumbinary disk
snapshot, taken from Noble et al. (2012), which is al-
ready turbulent and presents a lump (starting the sim-
ulation from a quasi-stationary torus, the lump appears
after ⇠ 50 orbits at these seperations, once the inner
edge has settled). This is very important to accurately
describe the periodicities of the system given by the beat
frequency, which is set by the orbital motion of the lump.
These quasi-periodicities might be di↵erent if the ther-
modynamics change, e.g. if there is no cooling, although
currently there are no su�ciently long 3D GRMHD sim-
ulations of circumbinary disks exploring this. Interest-
ingly, we found that the Poynting flux is also modulated
by the beat frequency. For BBH approaching merger,
this constitutes a possible independent observable if this
periodicity is translated to jet emission. As expected,
for spinning BHs, we also found more powerful Poynting
fluxes, in agreement with Paschalidis et al. (2021).

With our careful analysis of the accretion onto the
mini-disks, we show that a disk-like structure survives for
longer as the binary shrinks when the black holes have
spin. Further explorations with higher spins will show
how far these structures survive very close to merger.

5. CONCLUSIONS

We have performed a GRMHD accretion simulation of
an equal-mass binary black hole with aligned spins of
a = 0.6 MBH approaching merger. We have compared
this simulation with a previous non-spinning simulation
of the same system, analyzing the main di↵erences in
mini-disk accretion and the variabilities induced by the
circumbinary disk accretion. Our main findings can be
summarized as follows:

• Mini-disks in S06, where BHs have aligned spins
� = 0.6, are more massive than in S0, where BHs
have zero spins, by a factor of two. The mass and
accretion rate of mini-disks have quasi-periodicities
determined by the beat frequency in both simula-
tions (see Section 3.2).

• The material in the mini-disk region can be sepa-
rated into two components of relatively high and
low angular momentum. The low angular momen-
tum component mostly plunges directly from the
lump edge, forming a strong single-arm stream.
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Figure 12. Comparison between the time-averaged SED during the 5-th orbit of S06 simulation and single black hole disk
models. Left panel: Comparison of the numerical spectrum of the CBD (solid red line) and the mini-disks (dashed red line) with
the following Novikov-Thorne (NT) disk models. The curve denoted as CBD Model shows the spectrum of a NT disk for a black
hole mass of 106M� and normalized spin � = 0.6, an accretion rate of 0.25ṀEdd, an inner radius at 2hr12i ⇠ 38M , and an outer
radius at 150M . Each of the curves denoted as MDModels A, B, and C show the added spectrum of two NT disks onto equal black
holes with a mass of 0.5⇥106M� and a normalized spin of � = 0.6. The NT disks have the inner radius at the individual ISCOs,
⇠ 3.8m1,2 = 1.9M , the outer radius at 0.4hr12i ⇠ 7.6M = 15.2m1,2, and an accretion rate of (Model A: ṁ1 = ṁ2 = 0.125ṀEdd;
Model B: ṁ1 = 6⇥ 10�2ṀEdd, ṁ2 = 6.8⇥ 10�2ṀEdd; Model C: ṁ1 = 2.3⇥ 10�2ṀEdd, ṁ2 = 2.7⇥ 10�2ṀEdd). These values
correspond to the accretion rate measured in the CBD region, and the total and circularized accretion rates measured onto each
black hole, respectively. Right panel: Comparison between the total SED derived from the simulation and one for a single black
hole of mass M = 106M� in which we use Schnittman et al. (2016)’s radial luminosity profile. The disk has an accretion rate
of 0.25ṀEdd, an inner radius at ⇠ 1.2rH ⇠ 2.16M , and an outer radius at 150M . 10% of the luminosity arises from an optically
thin corona.

rate in Eddington units, the frequencies of features are
/ M

�1/4.
In Figure 12, MD Model A (red curve) represents the

case in which the accretion rate onto both mini-disks
is equal to that in the CBD region, 0.25ṀEdd. For
simplicity, we assume that it divides evenly between
the two mini-disks7. The spectrum obtained is ⇠ 3.7
times brighter than the one obtained from S06. One
source of this large discrepancy is a breakdown in the
NT model assumption of inflow equilibrium: the accre-
tion rate in the mini-disks is approximately half that
in the CBD region. More precisely, the averaged accre-
tion rates onto the black holes during the 5-th orbit are
⇠ 6.8 ⇥ 10�2

ṀEdd and 6 ⇥ 10�2
ṀEdd when the CBD

accretion rate is 0.25ṀEdd.
However, this accretion rate contrast does not com-

pletely explain the shortfall. Model B shows the com-

7 In the real scenario, however, one mini-disk is typically brighter
than the other at any given time, this e↵ect is periodic (see Fig-
ure 8) and the variation during an orbit likely averages out this
di↵erence.

bined spectrum of two NT mini-disk models with the ac-
tual accretion rates. They are still ⇠ 1.7 times brighter
than the numerical spectrum, indicating that the mini-
disks have a lower radiative e�ciency than the NT disk.
At least part of this diminished radiative e�ciency is
due to some of the accreting matter at each radius hav-
ing less angular momentum than the value required for
a circular orbit at that radius, i.e., l(r) < lK(r). This
material, which follows a decidedly non-circular orbit, is
able to reach the event horizon with higher orbital en-
ergy (lower binding energy) than matter following stable
circular orbits. To distinguish the luminosity from the
fluid that follows quasi-circular orbits from that radiated
by the fluid on non-circular orbits, we define the ‘circu-
larized’ accretion rate as the rate delivered by matter
with l(r) � lK(r), and averaging from rISCO to rtrunc.
The ‘circularized’ accretion rates are 2.3⇥10�2

ṀEdd and
2.6 ⇥ 10�2

ṀEdd for the two black holes, respectively.
Model C shows the spectrum for two NT disks with

the circularized accretion rates of the real mini-disks,
but this model still departs from the simulation spec-
trum in significant ways; its luminosity is a factor ⇠ 1.5
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Figure 12. Comparison between the time-averaged SED during the 5-th orbit of S06 simulation and single black hole disk
models. Left panel: Comparison of the numerical spectrum of the CBD (solid red line) and the mini-disks (dashed red line) with
the following Novikov-Thorne (NT) disk models. The curve denoted as CBD Model shows the spectrum of a NT disk for a black
hole mass of 106M� and normalized spin � = 0.6, an accretion rate of 0.25ṀEdd, an inner radius at 2hr12i ⇠ 38M , and an outer
radius at 150M . Each of the curves denoted as MDModels A, B, and C show the added spectrum of two NT disks onto equal black
holes with a mass of 0.5⇥106M� and a normalized spin of � = 0.6. The NT disks have the inner radius at the individual ISCOs,
⇠ 3.8m1,2 = 1.9M , the outer radius at 0.4hr12i ⇠ 7.6M = 15.2m1,2, and an accretion rate of (Model A: ṁ1 = ṁ2 = 0.125ṀEdd;
Model B: ṁ1 = 6⇥ 10�2ṀEdd, ṁ2 = 6.8⇥ 10�2ṀEdd; Model C: ṁ1 = 2.3⇥ 10�2ṀEdd, ṁ2 = 2.7⇥ 10�2ṀEdd). These values
correspond to the accretion rate measured in the CBD region, and the total and circularized accretion rates measured onto each
black hole, respectively. Right panel: Comparison between the total SED derived from the simulation and one for a single black
hole of mass M = 106M� in which we use Schnittman et al. (2016)’s radial luminosity profile. The disk has an accretion rate
of 0.25ṀEdd, an inner radius at ⇠ 1.2rH ⇠ 2.16M , and an outer radius at 150M . 10% of the luminosity arises from an optically
thin corona.
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than the other at any given time, this e↵ect is periodic (see Fig-
ure 8) and the variation during an orbit likely averages out this
di↵erence.

bined spectrum of two NT mini-disk models with the ac-
tual accretion rates. They are still ⇠ 1.7 times brighter
than the numerical spectrum, indicating that the mini-
disks have a lower radiative e�ciency than the NT disk.
At least part of this diminished radiative e�ciency is
due to some of the accreting matter at each radius hav-
ing less angular momentum than the value required for
a circular orbit at that radius, i.e., l(r) < lK(r). This
material, which follows a decidedly non-circular orbit, is
able to reach the event horizon with higher orbital en-
ergy (lower binding energy) than matter following stable
circular orbits. To distinguish the luminosity from the
fluid that follows quasi-circular orbits from that radiated
by the fluid on non-circular orbits, we define the ‘circu-
larized’ accretion rate as the rate delivered by matter
with l(r) � lK(r), and averaging from rISCO to rtrunc.
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the circularized accretion rates of the real mini-disks,
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Figure 12. Comparison between the time-averaged SED during the 5-th orbit of S06 simulation and single black hole disk
models. Left panel: Comparison of the numerical spectrum of the CBD (solid red line) and the mini-disks (dashed red line) with
the following Novikov-Thorne (NT) disk models. The curve denoted as CBD Model shows the spectrum of a NT disk for a black
hole mass of 106M� and normalized spin � = 0.6, an accretion rate of 0.25ṀEdd, an inner radius at 2hr12i ⇠ 38M , and an outer
radius at 150M . Each of the curves denoted as MDModels A, B, and C show the added spectrum of two NT disks onto equal black
holes with a mass of 0.5⇥106M� and a normalized spin of � = 0.6. The NT disks have the inner radius at the individual ISCOs,
⇠ 3.8m1,2 = 1.9M , the outer radius at 0.4hr12i ⇠ 7.6M = 15.2m1,2, and an accretion rate of (Model A: ṁ1 = ṁ2 = 0.125ṀEdd;
Model B: ṁ1 = 6⇥ 10�2ṀEdd, ṁ2 = 6.8⇥ 10�2ṀEdd; Model C: ṁ1 = 2.3⇥ 10�2ṀEdd, ṁ2 = 2.7⇥ 10�2ṀEdd). These values
correspond to the accretion rate measured in the CBD region, and the total and circularized accretion rates measured onto each
black hole, respectively. Right panel: Comparison between the total SED derived from the simulation and one for a single black
hole of mass M = 106M� in which we use Schnittman et al. (2016)’s radial luminosity profile. The disk has an accretion rate
of 0.25ṀEdd, an inner radius at ⇠ 1.2rH ⇠ 2.16M , and an outer radius at 150M . 10% of the luminosity arises from an optically
thin corona.
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ṀEdd and 6 ⇥ 10�2
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models. Left panel: Comparison of the numerical spectrum of the CBD (solid red line) and the mini-disks (dashed red line) with
the following Novikov-Thorne (NT) disk models. The curve denoted as CBD Model shows the spectrum of a NT disk for a black
hole mass of 106M� and normalized spin � = 0.6, an accretion rate of 0.25ṀEdd, an inner radius at 2hr12i ⇠ 38M , and an outer
radius at 150M . Each of the curves denoted as MDModels A, B, and C show the added spectrum of two NT disks onto equal black
holes with a mass of 0.5⇥106M� and a normalized spin of � = 0.6. The NT disks have the inner radius at the individual ISCOs,
⇠ 3.8m1,2 = 1.9M , the outer radius at 0.4hr12i ⇠ 7.6M = 15.2m1,2, and an accretion rate of (Model A: ṁ1 = ṁ2 = 0.125ṀEdd;
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correspond to the accretion rate measured in the CBD region, and the total and circularized accretion rates measured onto each
black hole, respectively. Right panel: Comparison between the total SED derived from the simulation and one for a single black
hole of mass M = 106M� in which we use Schnittman et al. (2016)’s radial luminosity profile. The disk has an accretion rate
of 0.25ṀEdd, an inner radius at ⇠ 1.2rH ⇠ 2.16M , and an outer radius at 150M . 10% of the luminosity arises from an optically
thin corona.
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correspond to the accretion rate measured in the CBD region, and the total and circularized accretion rates measured onto each
black hole, respectively. Right panel: Comparison between the total SED derived from the simulation and one for a single black
hole of mass M = 106M� in which we use Schnittman et al. (2016)’s radial luminosity profile. The disk has an accretion rate
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NT = Novikov-Thorne (1972) “thin disk”

Schnittman, Krolik, and Noble, ApJ, 819, 48, (2016).

• GRMHD simulation-informed model for all spins 
for thin disks, same total mass and Mdot;


• Truncated disk emission, weaker mini-disk 
accretion rate due to accelerated accretion via 
shocks.

Gutiérrez, Combi, Noble, Campanelli, Krolik, López 
Armengol, and García, ApJ, 928, 137, (2022).



Light Curves from Accretion onto Spinning BBHs

Spinning BBHs: a=0.6M, up-up
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Figure 9. Luminosity as a function of time for S06 at three
di↵erent frequencies: UV (upper panel, ⌫ = 6.5 ⇥ 1015 Hz),
far-UV (middle panel, ⌫ = 2.9 ⇥ 1016 Hz), and soft X-rays
(lower panel, ⌫ = 1018 Hz). The grey dashed vertical lines
show the end of the transient phase. Note the di↵erent dy-
namic ranges in each panel: ⇠ 50% in the top panel, a multi-
plicative factor ⇠ 8 in the middle panel, and a multiplicative
factor of ⇠ 2 in the bottom panel.

coordinates and ⌦ is the orbital velocity of a Keplerian
circular orbit in the Kerr spacetime. Eq. 10 neglects
light bending, but this phenomenon has little e↵ect on
the spectrum for face-on emission.
SMBBH emission comes from both the CBD and the

mini-disks. Not surprisingly, given the CBD’s state of
quasi-inflow equilibrium and its distance from the nom-
inal ISCO (corresponding to the total mass of the bi-
nary), its emission averaged over the 5-th orbit is well
reproduced by an NT disk extending from Rin,circ =
2hr12i ⇠ 38M to Rout,circ = 150M , accreting at a rate of
0.25ṀEdd, which are the same values used in our simula-
tions. Quantities enclosed in brackets are averaged dur-
ing the 5-th orbit. Even though we integrate from the
inner edge to the outer part of the disk, for this NT disk
model we have set the stress to zero at RISCO,circ = 6M ,
which corresponds to the system’s fictitious ISCO.
To analyze the SED of the mini-disks, we compare

them to three di↵erent NT models with varying accre-

Figure 10. Power spectral density of the light curves for S06
at the three frequencies indicated using a Welch algorithm
with Hamming window size of 10M . The confidence inter-
vals at 3� are shown as shadowed areas. The upper panel
corresponds to the total luminosity whereas the lower panel
takes into account only the emission coming from one of the
mini-disks. The mean orbital frequency is hfBi = 1/505M .

Figure 11. Same plot as in Figure 10 but for S0. The
dashed curve in the upper panel corresponds to the light
curve at E = 4 keV with the time corrected for the decreasing
period of the system. The mean orbital frequency is hfBi =
1/530M .

tion rates. None is a good match to the spectrum we
calculate. In all cases, we set the outer radius equal
to the truncation radius, Rout,md ⇠ 0.4hr12i ⇠ 8M =
16mi, the inner radius equal to the individual ISCOs,
RISCO,md(a = 0.6) = 3.8mi = 1.9M , and the mass and
spin equal to those of the black holes in the simulation:
(mi = 0.5 ⇥ 106M�, �i = 0.6). At a fixed accretion
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• Prograde spinning BBHs:

• Longer-lived mini-disks lead to relatively steadier x-ray 

emission and weaker signals at 2x beat freq.;

• Individual mini-disks still suffer beat modulation;

• Total variability in all frequencies modulates by lump’s 

orbital frequency, radial epicyclic oscillation; 

• Predict spinning BBHs will be predominantly varying at 

lower-frequencies than gravitational waves;

Gutiérrez, Combi, Noble, Campanelli, Krolik, López 
Armengol, and García, ApJ, 928, 137, (2022).



GR to Newtonian Scales
Miranda, Munoz, Lai (2019)

Gladkova, SCN++ in progress

Medium Disk Large Disk, a=20M Large Disk,   a=50M Large Disk, a=100M

● Does inspiral vs. outspiral depend on separation?  MHD vs. 
viscosity?

● How do we reconcile need for mass inflow equilibrium and the 
likely fact that AGN have “short” periods of activity and may 
have stochastic feeding processes (e.g., TDEs, misaligned 
annuli, …) ? 

~500 orbits ~500 orbits ~200 orbits ~100 orbits



Open Questions
•How is Poynting flux reprocessed?  Or how do predictions 
of Poynting flux turn into observables?

•Even though jets are seen to form in mergers, are they 
likely to reach large distances in post-merger 
environments?  Is there relic evidence of a binary in the 
post-merger jet properties? 

•How do we connect the Newtonian scales to the 
relativistic regime?   

•At what separations must inspiral simulations start from?  
Decoupling radius?    
Or when is  a / (da/dt)  >> tinflow ?

•How can we leverage viscous hydro results and connect 
to the GRMHD regime? 

•Modulation: what are the differences in the lump between 
Newtonian vs. GR, viscous hydro vs. MHD?

•What other binary signatures are we missing?


